| 1 | x2 | |||
f'(x) = | g(x)= | |||
| 2√x+1 | 2 |
| x2√x+1 | 1 | x2 | |||
− | ∫ | dx | |||
| 2 | 4 | √x+1 |
| 2 | 2 | |||
∫x√x+1dx= | √(x+1)3*x− | ∫√(x+1)3dx | ||
| 3 | 3 |
| (t−1)2 | t2−2t+1 | |||
wychodzi ∫ | dt = ∫ | dt = ∫t3/2dt − 2∫t1/2dt + | ||
| t1/2 | t1/2 |
| 1 | ||
∫ | ||
| t1/2 |
| 2 | 4 | |||
Ja właśnie nie wiem bo w odp jest: | x√(x+1)3− | √(x+1)5+C i nie wiem jak to | ||
| 3 | 15 |
| 2 | 2 | |||
v= ∫t12dt= | t32= | √(x+1)3] | ||
| 3 | 3 |
| 2 | 2 | |||
∫x√x+1 dx= | x*√(x+1)3−∫ | √(x+1)3dx=.. | ||
| 3 | 3 |
| 1 | 1 | (x−1)(x+1) | ||||
∫x√x+1dx= | (x2−1)√x+1− | ∫ | dx | |||
| 2 | 4 | √x+1 |
| 1 | 1 | |||
∫x√x+1dx= | (x2−1)√x+1− | ∫(x−1)√x+1dx | ||
| 2 | 4 |
| 1 | 1 | 1 | ||||
∫x√x+1dx= | (x2−1)√x+1− | ∫x√x+1dx+ | ∫√x+1dx | |||
| 2 | 4 | 4 |
| 5 | 1 | 1 | |||
∫x√x+1dx= | (x2−1)√x+1+ | ∫√x+1dx | |||
| 4 | 2 | 4 |
| 1 | x+1 | |||
∫√x+1dx=(x+1)√x+1− | ∫ | dx | ||
| 2 | √x+1 |
| 3 | |
∫√x+1dx=(x+1)√x+1 | |
| 2 |
| 2 | ||
∫√x+1dx= | (x+1)√x+1+C | |
| 3 |
| 5 | 1 | 1 | |||
∫x√x+1dx= | (x2−1)√x+1+ | (x+1)√x+1 | |||
| 4 | 2 | 6 |
| 2 | 2 | |||
∫x√x+1dx= | (x2−1)√x+1+ | (x+1)√x+1+C | ||
| 5 | 15 |
| 2 | ||
∫x√x+1dx= | (3x2+x−2)√x+1+C | |
| 15 |