9 | ||
∑ (od k=1 do n) | ||
(k+1)(k+2) |
9 | A | B | ||||
zacznij od przedstawienia | jako | + | ||||
(k+1)(k+2) | k+1 | k+2 |
9 | 9 | 9 | |||
= | − | ||||
(k+1)(k+2) | k+1 | k+2 |
1 | 1 | 1 | |||
+ | + | + | |||
1*2 | 2*3 | 3*4 |
1 | 1 | 1 | ||||
Masz postac | = | − | ||||
n*(n+1) | n | n+1 |
1 | 1 | 1 | 1 | 1 | 1 | ||||||
− | + | − | + | − | + itd teraz widzisz ze cos sie skroci | ||||||
1 | 2 | 2 | 3 | 3 | 4 |
1 | 1 | |||
∑(k=1 do n) | −∑(k=1 do n) | = | ||
k+1 | k+2 |
1 | 1 | 1 | 1 | 1 | 1 | |||||||
= | + | + | + | ....+ | + | + | ||||||
2 | 3 | 4 | 5 | n | n+1 |
1 | 1 | 1 | 1 | 1 | 1 | |||||||
− | − | − | +....− | − | − | = | ||||||
3 | 4 | 5 | n | n+1 | n+2 |
1 | 1 | n+2−2 | n | |||||
= | − | = | = | |||||
2 | n+2 | 2n+4 | 2n+4 |
9n | ||
S= | ||
2n+4 |
9 | 9 | |||
∑ ( | − | ) = | ||
k+1 | k+2 |
9 | 9 | |||
− | + | |||
1+1 | 1+2 |
9 | 9 | |||
+ | − | + | ||
1+2 | 1+3 |
9 | 9 | |||
+ | − | + | ||
1+3 | 1+4 |
9 | 9 | |||
+ | − | + | ||
1+4 | 1+5 |
9 | 9 | |||
+ | − | + | ||
1+5 | 1+6 |