| x3 | 1 | x4 | ||||
∫x2√R2−x2dx= | √R2−x2+ | ∫ | dx | |||
| 3 | 3 | √R2−x2 |
| x3 | 1 | R2x2−x4−R2x2 | ||||
∫x2√R2−x2dx= | √R2−x2− | ∫ | dx | |||
| 3 | 3 | √R2−x2 |
| x3 | 1 | R2 | x2 | ||||
√R2−x2− | ∫x2√R2−x2dx+ | ∫ | dx | ||||
| 3 | 3 | 3 | √R2−x2 |
| 4 | x3 | R2 | −x2+R2−R2 | ||||
∫x2√R2−x2dx= | √R2−x2− | ∫ | dx | ||||
| 3 | 3 | 3 | √R2−x2 |
| 4 | x3 | R2 | |||
∫x2√R2−x2dx= | √R2−x2− | ∫√R2−x2dx+ | |||
| 3 | 3 | 3 |
| R4 | dx | ||
∫ | |||
| 3 | √R2−x2 |
| x2 | ||
∫√R2−x2dx=x√R2−x2+∫ | dx | |
| √R2−x2 |
| R2−x2−R2 | ||
∫√R2−x2dx=x√R2−x2−∫ | dx | |
| √R2−x2 |
| dx | ||
∫√R2−x2dx=x√R2−x2−∫√R2−x2dx+R2∫ | ||
| √R2−x2 |
| dx | ||
2∫√R2−x2dx=x√R2−x2+R2∫ | dx | |
| √R2−x2 |
| 1 | R2 | dx | ||||
∫√R2−x2dx= | x√R2−x2+ | ∫ | dx | |||
| 2 | 2 | √R2−x2 |
| 4 | x3 | ||
∫x2√R2−x2dx= | √R2−x2 | ||
| 3 | 3 |
| R2 | 1 | R2 | dx | R4 | dx | |||||||
− | ( | x√R2−x2+ | ∫ | dx)+ | ∫ | |||||||
| 3 | 2 | 2 | √R2−x2 | 3 | √R2−x2 |
| 4 | 1 | R4 | dx | ||||
∫x2√R2−x2dx= | (2x3−R2x)√R2−x2+ | ∫ | dx | ||||
| 3 | 6 | 6 | √R2−x2 |
| 1 | R4 | x | ||||
∫x2√R2−x2dx= | (2x3−R2x)√R2−x2+ | arcsin( | )+C | |||
| 8 | 8 | R |
| 1 | ||
p= | ||
| 2 |
| m+1 | 2+1 | 1 | |||
+p= | + | =2∊ℤ | |||
| n | 2 | 2 |
| R2−x2 | ||
więc stosujesz podstawienie t2= | ||
| x2 |