(k−1) | ||
∑(od k=1 do n) | ||
k! |
k−1 | ||
f(k+1)−f(k)= | . | |
k! |
g(k) | ||
żeby mieć odpowiedni mianownik niech f(k)= | , wtedy: | |
(k−1)! |
g(k+1) | g(k) | g(k+1)−k*g(k) | ||||
f(k+1)−f(k)= | − | = | . | |||
k! | (k−1)! | k! |
g(k+1)−k*g(k) | (−1)−k*(−1) | k−1 | ||||
f(k+1)−f(k)= | = | = | . | |||
k! | k! | k! |
g(k) | −1 | |||
f(k)= | = | |||
(k−1)! | (k−1)! |
−1 | −1 | −1 | −1 | |||||
∑(od k=1 do n)( | )+ | = | +∑(od k=1 do n)( | ) | ||||
(k−1)! | ((n+1)−1)! | (1−1)! | ((k+1)−1)! |
−1 | −1 | −1 | ||||
⇒ ∑(od k=1 do n)( | )+ | =−1+∑(od k=1 do n)( | ) ⇒ | |||
(k−1)! | n! | k! |
−1 | −1 | −1 | ||||
⇒ ∑(od k=1 do n)( | − | )= | −(−1) ⇒ | |||
k! | (k−1)! | n! |
−1 | −k | −1 | n! | |||||
⇒ ∑(od k=1 do n)( | − | )= | + | ⇒ | ||||
k! | k! | n! | n! |
k−1 | n!−1 | |||
⇒ ∑(od k=1 do n)( | )= | |||
k! | n! |
k−1 | ||
∑(k=1 do n) | = | |
k! |
k | 1 | |||
=∑(k=1 do n) | −∑(k=1 do n) | = | ||
k! | k! |
k | 1 | |||
=1+∑(k=2 do n) | −∑(k=1 do n) | = | ||
k! | k! |
1 | 1 | |||
=1+∑(k=2 do n) | −∑(k=1 do n) | = | ||
(k−1)! | k! |
1 | 1 | 1 | 1 | |||||
=1+ | + | + | +..+ | + | ||||
1! | 2! | 3! | (n−1)! |
1 | 1 | 1 | 1 | 1 | ||||||
−( | + | + | +..+ | + | )= | |||||
1! | 2! | 3! | (n−1)! | n! |
1 | ||
=1− | = | |
n! |
n!−1 | ||
= | ||
n! |