1 | ||
log10(x)< | ||
x |
1+√1+x2 | 1 | |||
ln( | )< | |||
x | x |
dL | y | ||
= 1 + | ≤ 1+y | ||
dy | √y2+1 |
dP | |
= ey | |
dy |
dL | dP | dL | dP | |||||
zatem dla y=0 jest | = | , a dla y>0 | < | |||||
dy | dy | dy | dy |
1 | 1+√1+x2 | |||
f(x)= | − ln | |||
x | x |
1 | 1 | 1 | ||||
f ' (x) = − | ( | − | ) < 0 | |||
x | x | √1+x2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |