√x−1√x−1 | x−1 | |||
∫√x−1dx = ∫ | dx = ∫ | dx | ||
√x−1 | √x−1 |
(x−1) | ||
∫ | dx=2(x−1)√x−1−2∫√x−1dx | |
√x−1 |
(x−1) | x−1 | |||
∫ | dx=2(x−1)√x−1−2∫ | dx | ||
√x−1 | √x−1 |
(x−1) | ||
3∫ | dx=2(x−1)√x−1+C1 | |
√x−1 |
(x−1) | 2 | |||
∫ | dx= | (x−1)√x−1+C | ||
√x−1 | 3 |
1 | 2 | |||
∫ √x−1dx = ∫t * 2tdt = 2 ∫ t2 dt = 2( | t3) + C = | (√x−1)3 + C = | ||
3 | 3 |
2 | ||
= | (x−1)√x−1 + C | |
3 |