| x | 1 | |||
Rozwiąż równanie tg2 | *cos x = | |||
| 2 | 6 |
| x | |
= α | |
| 2 |
| 1 | ||
tg2α*cos 2α = | ||
| 6 |
| x | π | ||
≠ | +kπ⇔ | ||
| 2 | 2 |
| x | |
=α | |
| 2 |
| sin2α | 1 | ||
*(2cos2α−1)= | /*cos2α | ||
| cos2α | 6 |
| 1 | ||
sin2α*(2cos2α−1)= | cos2α | |
| 6 |
| 1 | ||
(1−cos2α)*(2cos2α−1)= | cos2α | |
| 6 |
| 1 | ||
(1−t)*(2t−1)= | t /*6 | |
| 6 |
| 17−1 | 2 | 17+1 | 3 | |||||
t= | = | lub t= | = | |||||
| 24 | 3 | 24 | 4 |
| 2 | 3 | |||
cos2α= | lub cos2α= | |||
| 3 | 4 |
| x | x | 1 | x | |||||
sin2 | −2sin4 | = | (1−sin2 | ) | ||||
| 2 | 2 | 6 | 2 |
| x | 7 | x | 1 | |||||
2sin4 | − | sin2 | + | =0 | ||||
| 2 | 6 | 2 | 6 |
| x | ||
t=sin2 | ||
| 2 |
| x | ||
2t2 | ||
| 2 |
| 7 | 1 | |||
2t2− | t+ | =0 | ||
| 6 | 6 |
| 1 | ||
t1= | ||
| 4 |
| 1 | ||
t2= | ||
| 3 |
| x | 1 | x | 1 | x | 1 | x | 1 | |||||||||
sin | = | v sin | =− | v sin | = | v sin | =− | |||||||||
| 2 | √3 | 2 | √3 | 2 | 2 | 2 | 2 |