wykres
homo:
| m | |
Punkt (4,−6) należy do wykresu funkcji f(x) = |
| + b |
| x−a | |
napisz wzór funkcji w postaci ilorazu dwu wielomianów pierwszego stopnia
| 6 − 3x | |
i rozwiąż nierówność f(x) ≥ |
| |
| x −3 | |
8 kwi 21:39
Mila:
Ustal wzór wg tego co zrobiłam wcześniej.
8 kwi 21:45
8 kwi 21:52
homo: m = − 2
8 kwi 21:53
8 kwi 21:54
Mila:
Dobrze.
8 kwi 21:54
5-latek: Zle jest
p dajesz zawszse ze zmienionym znakiem do wzoru
masz p=3
| m | |
wiec f(x)= |
| −4= licz |
| x−(−3) | |
8 kwi 21:56
5-latek: Ja napisalem zle (dobrze masz
p=3 a nie p=−3
8 kwi 21:57
homo: tutaj nie ma p tylko a
8 kwi 21:57
homo: | 10−4x | | 6−3x | | 4−x | |
|
| ≥ |
| => |
| ≥ 0 |
| x−3 | | x−3 | | x−3 | |
czyli (x−4)(x−3) ≤ ) => x ∊ [3,4]
8 kwi 22:01
Mila:
x≠3
10−4x | | 6−3x | |
| ≥ |
| /*(x−3)2 |
x−3 | | x−3 | |
(10−4x)*(x−3)≥(6−3x)*(x−3)⇔
(10−4x)*(x−3)−(6−3x)*(x−3)≥0
(x−3)*(10−4x−6+3x)≥0
(x−3)*(−x+4)≥0 parabola skierowana w dół
x∊(3,4>
8 kwi 22:03
homo: no tak 3 odpada
dzięki
8 kwi 22:10