dx | ||
∫ | ||
(√1+x2)3 |
t2−1 | ||
x= | ||
2t |
2t2−t2+1 | t2+1 | |||
t−x= | = | |||
2t | 2t |
2t*2t−2(t2−1) | ||
dx= | dt | |
4t2 |
t2+1 | ||
dx= | dt | |
2t2 |
8t3 | t2+1 | ||
∫ | dt | ||
(t2+1)3 | 2t2 |
4t | −2 | |||
∫ | dt= | +C | ||
(t2+1)2 | t2+1 |
dx | dx | |||
∫ | =∫ | |||
(√1+x2)3 | (1+x2)√1+x2 |
1+x2−x2 | ||
=∫ | dx | |
(1+x2)√1+x2 |
dx | x2 | |||
=∫ | −∫ | dx | ||
√1+x2 | (1+x2)√1+x2 |
x2 | ||
Całkę ∫ | dx liczysz przez części | |
(1+x2)√1+x2 |
x | ||
u=x dv= | ||
(1+x2)√1+x2 |
1 | ||
du=dx v=− | ||
√1+x2 |
dx | dt | x | ||||
∫ | = ∫ (cos t)3 | = ∫cos t dt = sin t = | ||||
(1+x2)3/2 | cos2t | √1+x |
x | ||
oczywiście ... = | ||
√1+x2 |