| dx | ||
∫ | ||
| (√1+x2)3 |
| t2−1 | ||
x= | ||
| 2t |
| 2t2−t2+1 | t2+1 | |||
t−x= | = | |||
| 2t | 2t |
| 2t*2t−2(t2−1) | ||
dx= | dt | |
| 4t2 |
| t2+1 | ||
dx= | dt | |
| 2t2 |
| 8t3 | t2+1 | ||
∫ | dt | ||
| (t2+1)3 | 2t2 |
| 4t | −2 | |||
∫ | dt= | +C | ||
| (t2+1)2 | t2+1 |
| dx | dx | |||
∫ | =∫ | |||
| (√1+x2)3 | (1+x2)√1+x2 |
| 1+x2−x2 | ||
=∫ | dx | |
| (1+x2)√1+x2 |
| dx | x2 | |||
=∫ | −∫ | dx | ||
| √1+x2 | (1+x2)√1+x2 |
| x2 | ||
Całkę ∫ | dx liczysz przez części | |
| (1+x2)√1+x2 |
| x | ||
u=x dv= | ||
| (1+x2)√1+x2 |
| 1 | ||
du=dx v=− | ||
| √1+x2 |
| dx | dt | x | ||||
∫ | = ∫ (cos t)3 | = ∫cos t dt = sin t = | ||||
| (1+x2)3/2 | cos2t | √1+x |
| x | ||
oczywiście ... = | ||
| √1+x2 |