(n+1)!−n! | ||
an= | ||
(n+1)!+n! |
n!(n+1)−n! | n!(n+1−1) | n | ||||
an= | = | = | ||||
n!(n+1)+n! | n!(n+1+1) | n+2 |
n | n | |||
limn→∞ | = limn→∞ | = 1 | ||
n+2 | n(1+2/n |
n+1 | n | (n+1)(n+2)−n(n+3) | n2+3n+2−n2−3n | ||||
− | = | = | = | ||||
n+3 | n+2 | (n+3)(n+2) | (n+3)(n+2) |
2 | ||
(n+3)(n+2 |
(n+1)−1 | n | n+2−2 | 2 | |||||
an = | = | = | =1− | , | ||||
(n+1)+1 | n+2 | n+2 | n+2 |