| √2n2+3n+√2n2+n | ||
=limn→∞ (√2n2+3n−√2n2+n) * | ||
| √2n2+3n+√2n2+n |
| (√2n2+3n)2−(√2n2+n)2 | ||
=limn→∞ | =
| |
| √2n2+3n+√2n2+n |
| 2n2+3n−2n2−n | ||
=limn→∞ | =
| |
| √2n2+3n+√2n2+n |
| 2n | ||
= limn→∞ | =
| |
| √2n2+3n+√2n2+n |
| 2n | ||
=limn→∞ | =
| |
| n*√2+3n+n*√2+1n |
| 2 | ||
=limn→∞ | =
| |
| √2+3n+√2+1n |
| 2 | √2 | |||
= | = | |||
| √2+0+√2+0 | 2 |