cosx−1 | ||
limx→0 | =0 | |
x |
1−cosx | 1 | |||
limx→0 | = | |||
x2 | 2 |
sinx | ||
limx→0 | = 1 | |
x |
tgx | ||
limx→0 | = 1 | |
x |
cosx | ||
limx→0+ | = +∞ | |
x |
cosx | ||
limx→0− | = −∞ | |
x |
tgx | ||
lim x→0 | =1 | |
x |
sin x | ||
Lim x−−>0 | ||
x |
cos x−1 | ||
Lim x−−>0 | ||
x |
1−cosx | ||
Lim x−−>0 | ||
x2 |
sin x | ||
i otrzymujesz granice Lim x−−>0 | ||
x |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |