x−2 | 1 | |||
= 2∫ | dx + 3∫ | dx | ||
x−2 | x−2 |
√x | √x−1 | |||
∫ | dx=2√x√x−1−∫ | dx | ||
√x−1 | √x |
√x | x−1 | |||
∫ | dx=2√x√x−1−∫ | dx | ||
√x−1 | √x√x−1 |
√x | √x | 1 | ||||
∫ | dx=2√x√x−1−∫ | dx+∫ | dx | |||
√x−1 | √x−1 | √x√x−1 |
√x | 1 | |||
2∫ | dx=2√x√x−1+∫ | dx | ||
√x−1 | √x√x−1 |
1 | 1 | |||
∫ | dx=∫ | dx | ||
√x√x−1 | √x2−x |
1 | ||
∫ | dx | |
√x2−x |
t2 | ||
x= | ||
2t−1 |
t2−t | ||
t−x= | ||
2t−1 |
2t(2t−1)−2t2 | ||
dx= | dt | |
(2t−1)2 |
2t2−2t | ||
dx= | dt | |
(2t−1)2 |
2t−1 | 2(t2−t) | ||
∫ | dt | ||
t2−t | (2t−1)2 |
2 | ||
∫ | dt=ln|2t−1|+C | |
2t−1 |
√x | ||
2∫ | dx=2√x√x−1+ln|2x−1+2√x2−x|+C | |
√x−1 |
√x | ||
2∫ | dx=2√x√x−1+ln|(√x)2+(√x−1)2+2√x√x−1|+C | |
√x−1 |
√x | ||
2∫ | dx=2√x√x−1+ln|(√x+√x−1)2|+C | |
√x−1 |
√x | ||
2∫ | dx=2√x√x−1+2ln|√x+√x−1|+C | |
√x−1 |
√x | ||
∫ | dx=√x√x−1+ln|√x+√x−1|+C | |
√x−1 |
x | t2 | 1 | ||||
t2 = | , x = | = 1+ | ||||
x−1 | t2−1 | t2−1 |
√x | 1 | t | 1 | |||||
∫ | dx = ∫ t ( | )' dt = | − ∫ | dt | ||||
√x−1 | t2−1 | t2−1 | t2−1 |
t | 1 | 1 | 1 | |||||
= | − | ∫ ( | − | ) dt | ||||
t2−1 | 2 | t−1 | t+1 |
t | 1 | t−1 | ||||
= | + | ln | = √x(x−1) − ln(√x + √x−1) | |||
t2−1 | 2 | t+1 |