matematykaszkolna.pl
Wyznaczanie parametru m, dla których równanie kwadratowe ma 1 rozwiązanie Bilauta: Wyznacz wszystkie wartości parametru m, dla których równanie: x2 − (|m|+1)x + m2 = 0 ma dokładnie jedno rozwiązanie
1 kwi 15:32
powrócony z otchłani: Δ=0 i sprawdzasz koedy to zachodzi
1 kwi 15:33
Jerzy: Jedyny warunek: Δ = 0
1 kwi 15:33
Bilauta: No dobra, z delty mi wychodzi: −3m2 + 2|m| + 1 = 0 i rozbiłam to na dwa przypadki: −3m2 + 2m + 1 = 0 lub −3m2 − 2m + 1 = 0] z pierwszego wychodzi mi, że m∊{1, −13}, a z drugiego m∊{−1, 13} A w odpowiedziach poprawne to tylko −1 i 1. Co robię źle?
1 kwi 15:46
Adamm: −3m2+2m+1=0 ale dla m≥0 podobnie, −3m2−2m+1=0 ale dla m<0
1 kwi 15:48
Bilauta: O zapomniałam o tym, dziękuję
1 kwi 15:58