2 x + 2 y = 16 / : 2
x + y = 8 ⇒ y = 8 − x
więc
x2 + ( 8 − x)2 = 36
x2 + 64 − 16 x + x2 − 36 = 0
2 x2 − 16 x + 28 = 0 / : 2
x2 − 8 x + 14 = 0
Δ = 64 − 4*1*14 = 8
√Δ = 2√2
| 8 − 2√2 | ||
x = | = 4 − √2 | |
| 2 |
| fe | ||
f+e=16 , a=6 i P= | ||
| 2 |
| fe | ||
f2+e2=4a2 ⇒ (f+e)2−2fe=4a2 ⇒ 162−2fe=4*36 ⇒ fe=56 ⇒ | =P=28 | |
| 2 |