xdx | ||
∫ | ||
x2−arctgx |
e3x | ||
∫ | dx | |
3e4x−5 |
xdx | ||
∫ | ||
x2+cosx |
xcosx | ||
∫ | dx | |
(x2−1)3 |
x | 1 | cos(x) | 1 | −sin(x) | |||||
∫ | cos(x)dx=− | + | ∫ | dx | |||||
(x2−1)3 | 4 | (x2−1)2 | 4 | (x2−1)2 |
−sin(x) | −1+x2−x2 | |||
∫ | dx=∫ | sin(x)dx | ||
(x2−1)2 | (x2−1)2 |
−sin(x) | sin(x) | −x | ||||
∫ | dx=∫ | dx+∫ | (xsin(x))dx | |||
(x2−1)2 | x2−1 | (x2−1)2 |
−sin(x) | sin(x) | 1 | xsin(x) | ||||
∫ | dx=∫ | dx+ | |||||
(x2−1)2 | x2−1 | 2 | x2−1 |
1 | sin(x)+xcos(x) | |||
− | ∫ | dx | ||
2 | x2−1 |
−sin(x) | 1 | xsin(x) | 1 | sin(x)−xcos(x) | |||||
∫ | dx= | + | ∫ | dx | |||||
(x2−1)2 | 2 | x2−1 | 2 | x2−1 |
x | 1 | cos(x) | 1 | xsin(x) | ||||
∫ | cos(x)dx=− | + | ||||||
(x2−1)3 | 4 | (x2−1)2 | 8 | x2−1 |
1 | sin(x)−xcos(x) | |||
+ | ∫ | dx | ||
8 | x2−1 |
sin(x)−xcos(x) | sin(x) | x | ||||
∫ | dx=∫ | dx−∫ | cos(x)dx | |||
x2−1 | x2−1 | x2−1 |