3√2/x−1+1 | 0 | (3√2/x−1+1)' | ||||
=limx→∞( | )=[ | ]=limx→∞( | )= | |||
1/x | 0 | (1/x)' |
| 2 | 2 | ||||||||||
=limx→∞ | =limx→∞ | = | ||||||||||
| 3(2/x−1)2/3 | 3 |
1 | ||
(3√2/x−1+1)'=(3√2/x−1)'+(1)'=((2/x−1)1/3)'+0= | *(2/x−1)−2/3*(2/x−1)'= | |
3 |
1 | −2x−2+0 | −2 | ||||
= | *((2x−1)'+(−1)')= | = | ||||
3(2/x−1)2/3 | 3(2/x−1)2/3 | 3(2/x−1)2/3x2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |