| tgx | ||
zadanie jest takie, zeby obliczyc calkę ∫ | dx | |
| cos2x |
| tgx | ||
∫ | dx | |
| cos2x |
| dx | ||
dt= | ||
| cos2x |
| tgx | 1 | |||
∫ | dx = ∫tdt = | tg2x + c | ||
| cos2x | 2 |
| tgx | sinx | |||
∫ | dx = ∫ | dx | ||
| cos2x | cos3x |
| sinx | dt | 1 | 1 | |||||
∫ | dx = − ∫ | = −∫t−3dt = | * | + c | ||||
| cos3x | t3 | 2 | cos2x |
| 1 | 1 | 1 | sin2x + cos2x | ||||
* | + c = | * | + c = | ||||
| 2 | cos2x | 2 | cos2x |
| 1 | 1 | 1 | |||
*(tg2x + 1) + c = | *tg2x + 1/2 + c = | *tg2x + c1 | |||
| 2 | 2 | 2 |