W trójkąt prostokątny ABC o przeciwprostokątnej AC wpisano prostokąt KBLM (rysunek).
| |BL| | |BK| | |||
Udowodnij, że | + | = 1 | ||
| |BC| | |BA| |
| |LC| | |BC| − |BL| | |||
ctg (∡BCA) = | = | |||
| |LM| | |BK| |
| |BC| | ||
ale także: ctg (∡BCA) = | ||
| |AB| |
| |MK| | |BL| | |||
a także: tg(∡CAB) = | = | = ctg (∡BCA) | ||
| |AK| | |AB| − |BK| |
| |BC| − |BL| | |BL| | |BC| | |||
= | = | ||||
| |BK| | |AB| − |BK| | |AB| |
| |BC| − |BL| | |BL| | |BC| − |BL| | |BK| | ||||
= | ⇔ | = | |||||
| |BK| | |AB| − |BK| | |BL| | |AB| − |BK| |
| |BC| | |BK| − |AB| + |AB| | |||
z (*) | − 1 = | ⇔ | ||
| |BL| | |AB| − |BK| |
| |BC| | |AB| | |BL| | |AB| − |BK| | |||||
⇔ | = | ⇔ | = | ⇔ | ||||
| |BL| | |AB|−|BK| | |BC| | |AB| |
| |BL| | |BK| | |BL| | |BK| | |||||
⇔ | = 1 − | ⇔ | + | = 1 | ||||
| |BC| | |AB| | |BC| | |BC| |