|BL| | |BK| | |||
Udowodnij, że | + | = 1 | ||
|BC| | |BA| |
|LC| | |BC| − |BL| | |||
ctg (∡BCA) = | = | |||
|LM| | |BK| |
|BC| | ||
ale także: ctg (∡BCA) = | ||
|AB| |
|MK| | |BL| | |||
a także: tg(∡CAB) = | = | = ctg (∡BCA) | ||
|AK| | |AB| − |BK| |
|BC| − |BL| | |BL| | |BC| | |||
= | = | ||||
|BK| | |AB| − |BK| | |AB| |
|BC| − |BL| | |BL| | |BC| − |BL| | |BK| | ||||
= | ⇔ | = | |||||
|BK| | |AB| − |BK| | |BL| | |AB| − |BK| |
|BC| | |BK| − |AB| + |AB| | |||
z (*) | − 1 = | ⇔ | ||
|BL| | |AB| − |BK| |
|BC| | |AB| | |BL| | |AB| − |BK| | |||||
⇔ | = | ⇔ | = | ⇔ | ||||
|BL| | |AB|−|BK| | |BC| | |AB| |
|BL| | |BK| | |BL| | |BK| | |||||
⇔ | = 1 − | ⇔ | + | = 1 | ||||
|BC| | |AB| | |BC| | |BC| |