BE⊥SC i DE⊥SC
W ΔDBE:
(*) (a√2)2=e2+e2−2*e*e*cosα
| 1 | 3√7 | |||
W ΔSFC: h2+ | a2=16a2, h= | |||
| 4 | 2 |
| 3a2√7 | ||
PΔBCS= | ||
| 4 |
| 1 | ||
PΔBCS= | *4a*e | |
| 2 |
| 3a2√7 | ||
2a*e= | ||
| 4 |
| 3a√7 | ||
e= | podstawiamy do (*) | |
| 8 |
| 2*9*7a2 | ||
2a2= | *(1−cosα)⇔ | |
| 64 |
| 9*7 | ||
2= | *(1−cosα) | |
| 32 |
| 64 | ||
1−cosα= | ||
| 63 |
| 64 | ||
1− | =cosα | |
| 63 |
| 1 | ||
cosα=− | ||
| 63 |