| dx | ||
2)Całka oznaczona od 0 do ∞ z ∫ | . | |
| 1+x4 |
| xlnx | ||
3)Całka oznaczona od 0 do ∞ z ∫ | dx. | |
| 1+x2 |
| dx | ||
4)Całka oznaczona od 0 do ∞ z ∫ | ||
| x√1+x5+x10 |
| 1 | Ax+B | Cx+D | |||
= | + | ||||
| (1+√2x+x2)(1−√2x+x2) | 1+√2x+x2 | 1−√2x+x2 |
| t2−1 | ||
x5= | ||
| 2t+1 |
| 2t(2t+1)−2(t2−1) | ||
5x4dx= | dt | |
| (2t+1)2 |
| 2 | t2+t+1 | ||
x4dx= | dt | ||
| 5 | (2t+1)2 |
| 2t2+t−t2+1 | t2+t+1 | |||
t−x5= | = | |||
| 2t+1 | 2t+1 |
| 1 | x4dx | |||
∫ | dx=∫ | |||
| x√1+x5+x10 | x5√1+x5+x10 |
| 2t+1 | 2t+1 | 2 | t2+t+1 | ||
∫ | dt | ||||
| t2−1 | t2+t+1 | 5 | (2t+1)2 |
| 1 | 2 | |||
= | ∫ | dt | ||
| 5 | t2−1 |
| 1 | (t+1)−(t−1) | |||
= | ∫ | dt | ||
| 5 | (t+1)(t−1) |
| 1 | dt | dt | ||||
= | (∫ | −∫ | ) | |||
| 5 | t−1 | t+1 |
| 1 | t−1 | |||
= | ln| | |+C | ||
| 5 | t+1 |
| 1 | α−1 | β−1 | |||
(limα→∞ln| | |−limβ→1ln| | |) | |||
| 5 | α+1 | β+1 |
| 1 | b | |||
∫e−axsin(bx)dx=− | e−axsin(bx)+ | ∫e−axcos(bx)dx | ||
| a | a |
| 1 | a | |||
∫e−axsin(bx)dx=− | e−axcos(bx)− | ∫e−axcos(bx)dx | ||
| b | b |
| 4 | 2+√2x | 2−√2x | |||
= | + | ||||
| 1+x4 | 1+√2x+x2 | 1−√2x+x2 |