matematykaszkolna.pl
logarytmy Mikol: Dla jakich wartości parametru p równanie log(px2)/log(x+1)=2 ma dokładnie jedno rozwiązanie? Moje rozwiązanie: Zaisuje zastrzerzenia: x≠0 x>−1 p>0 (x+1)2=px2 ⇔ (p−1)x2−2x−1=0 Δ=4p Dokładnie jedno rozwiązanie jest dla p=0, co jest sprzeczne... Zatem nie ma takiego p. Czy ktoś mógłby zerknąć na moje rozumowanie, zobaczyć czy czegoś nie przeoczyłem?
18 mar 12:22
speedy: AGH III etap 2010/11 zadanie 6, tak?emotka Też mam takie rozwiązanie i też mi wyszło, że p należy do pustego zbioruemotka Też jutro jedziesz?emotka A mógłbyś pomóc z moim zadankiem? Rozwiąż układ równań: a+r=b b+r=c bq=c cq=d a+d=28 b+c=24
18 mar 12:47
Mikol: Tak z AGH emotka Praca pełną parą emotka Co do twojego zadanka: Z dwóch ostatnich równań: c=24−b d=28−a Z dwóch pierwszych równań: b+r=24−b 1*)r=24−2b a+24−2b=b 2*)a=3b−24 Z 1* i 2* wiemy, że: a=12−3r/2 b=12−r/2 Z 3 i 4 rówanania: (12−r/2)q=24−(12−r/2) (12−3r/2)q=28−(12−3r/2) Stąd: (24−3r)(24+r)=(32+3r)(24−r) −88r=192 Zatem r=−24/11 No i resztę łatwo wyliczć, i powinno być dobrze o ile nie jakiś błedzik rachunkowy emotka Widzimy się w jutro w Krakowie emotka
18 mar 13:11
relaa: Przecież dla p = 1 otrzymasz jedno rozwiązanie.
18 mar 13:41
Mikol: Ooo rzeczywiście Zapomniałem o przypadku liniowym wielkie dzięki relaa
18 mar 13:44