x | ||
jak policzyć całke z tego | ||
(√x(1+x)) |
√x | ||
Ale jak wtedy policzyć | ||
1+x |
1 | x | 1 | 2x | ||
= | |||||
√x | 1−x | 2√x | 1−x |
1 | 2x−2+2 | ||
= | |||
2√x | 1−x |
1 | 2 | |||
= | ( | −2) | ||
2√x | 1−x |
1 | ((1+√x)+(1−√x)) | |||
= | ( | −2) | ||
2√x | (1−√x)(1+√x) |
1 | 1 | 1 | ||||
= | ( | + | −2) | |||
2√x | 1−√x | 1+√x |
1 | x | 1+√x | |||
∫ | dx=ln| | |−2√x+C | |||
√x | 1−x | 1−√x |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |