π | ||
2sin(x+ | ) ≥ 1 /:(2) | |
3 |
π | 1 | |||
sin(x+ | ) ≥ | |||
3 | 2 |
π | ||
podst. t = (x+ | ) | |
3 |
π | −π | |||
t1 = | + 2kπ, czyli x1 = | + 2kπ | ||
6 | 6 |
5π | π | |||
t2 = | + 2kπ, czyli x2 = | + 2kπ | ||
6 | 2 |
−π | π | |||
x1 i x2 oznaczone kolejno, czyli wynikiem równania są x ∊ < | ; | >, a odpowiedź to | ||
6 | 2 |
π | 11π | |||
x ∊ <0; | > ∪ < | ; 2π> | ||
2 | 6 |
π | 1 | |||
sin(x+ | )≥ | i x∊<0,2π> | ||
3 | 2 |
π | π | 5π | π | ||||
+2kπ≤x+ | ≤ | +2kπ / − | |||||
6 | 3 | 6 | 3 |
π | 3π | |||
− | +2kπ<x< | +2kπ | ||
6 | 6 |
π | ||
x>0 i x< | ||
2 |
11π | ||
x> | i x<2π | |
6 |