| (x+1)2 | ||
f(x)= | ||
| 2x |
| f(x) | ||
Asymptota ukośna y = a*x + b gdzie a = lim(x→∞) | , b = lim(x→∞)(f(x) − a*x) | |
| x |
| x2 + 2*x + 1 | 1 + 2/x + 1/x2 | 1 | ||||
a = lim | = lim | = | ||||
| 2*x2 | 2 | 2 |
| x2 + 2*x + 1 | x | x2 + 2*x + 1 − x2 | ||||
b = lim( | − | ) = lim | = | |||
| 2*x | 2 | 2*x |
| 2*x + 1 | 2 + 1/x | |||
lim | = lim | = 1 | ||
| 2*x | 2 |
| 1 | ||
y = | *x + 1 | |
| 2 |