1 | ||
sin(x)cos(x) − 1 = | sin(2x) − 1 | |
2 |
1 | 1 | 1 | ||||
− | ≤ | sin(2x) ≤ | ||||
2 | 2 | 2 |
3 | 1 | 1 | ||||
− | ≤ | sin(2x) − 1 ≤ − | ||||
2 | 2 | 2 |
1 | 1 | |||
sinxcosx = | * 2sinxcosx = | sin2x | ||
2 | 2 |
1 | 1 | 1 | ||||
− | ≤ | *sin2x ≤ | ||||
2 | 2 | 2 |
3 | 1 | 1 | ||||
− | ≤ | sin2x − 1 ≤ − | ||||
2 | 2 | 2 |
1 | ||
to f(x)= | sin(2x)−1 | |
2 |
1 | 1 | 1 | ||||
− | ≤ | sin(2x)≤ | \ −1 | |||
2 | 2 | 2 |
1 | 1 | |||
−1,5≤ | sin(2x)−1≤ − | |||
2 | 2 |
3 | ||
Mam nadzieję ,że wiesz iż .... − | = −1,5 | |
2 |