| 1 | ||
∫ | dx = | |
| (x+1)√1−x |
| −2t | −1 | 1 | ||||
... = ∫ | dt = 2 ∫ | dt = 2 ∫ | dt = albo na ulamki proste | |||
| (2−t2)*t | 2−t2 | t2−2 |
| 1 | 1 | ||||||||||||||||||
= 2 ∫ | dt = ∫ | dt = podstawiamy teraz : | |||||||||||||||||
|
|
| t | ||
u = | ||
| √2 |
| t2 | ||
u2 = | ||
| 2 |
| 1 | ||
du = | dt (to z pierwszej linijki tego podstawienia) | |
| √2 |
| 1 | ||
zatem = √2 ∫ | du = wzor elementarny | |
| u2−1 |
| dx | 1 | x−a | ||||
∫ | dx = | ln| | |+C | |||
| x2−a2 | 2a | x+a |
| 1 | x−1 | |||
zatem ... = √2 * | ln| | | + C =... | ||
| 2 | x+1 |
| 1 | ||
∫ | dt | |
| t2 − 2 |
| t2−1 | 2 | |||
√x= | =1− | |||
| t2+1 | t2+1 |
| 1 | 2t(t2+1)−2t(t2−1) | ||
dx= | dt | ||
| 2√x | (t2+1)2 |
| 1 | 8t | ||
dx= | dt | ||
| √x | (t2+1)2 |
| t2−1 | 8t | ||
dx= | dt | ||
| t2+1 | (t2+1)2 |
| t3−t | ||
dx=8 | dt | |
| (t2+1)3 |
| t4+1 | ||
x+1=2 | ||
| (t2+1)2 |
| 2t | ||
√1−x= | ||
| t2+1 |
| (t2+1)2 | t2+1 | t3−t | |||
∫ | 8 | dt | |||
| 2(t4+1) | 2t | (t2+1)3 |
| t2−1 | ||
2∫ | dt | |
| t4+1 |
| 2t2−2 | ||
∫ | dt | |
| (t2−√2t+1)(t2+√2t+1) |
| At+B | Ct+D | t2−1 | |||
+ | =2∫ | dt | |||
| t2−√2t+1 | t2+√2t+1 | t4+1 |
| √2t−1 | √2t+1 | |||
∫ | dt−∫ | dt | ||
| t2−√2t+1 | t2+√2t+1 |
| √2 | 2t−√2 | √2 | 2t+√2 | |||||
= | ∫ | dt− | ∫ | dt | ||||
| 2 | t2−√2t+1 | 2 | t2+√2t+1 |
| √2 | t2−√2t+1 | |||
= | ln| | |+C | ||
| 2 | t2+√2t+1 |
| √2 | x−3+2√2√1−x | ||
ln| | |+C | ||
| 2 | x+1 |