liczby zespolone
studia: Czy jest to dobrze zrobione?
z4=−4
z=4√4
|z|=4
cos −4/4=−1 II ćwiartka π−0=π
sin 0/4=0
w0=4√4(cos π/4+isin π/4)= 4√4(√2/2+√2/2 i)= 1+i
w1=1+i(cos 2π/4 +isin 2π/4)=1+i(0+i)=−1+i
w2=−1+i(cos 2π/4 + isin 2π/4)=−1
w3=−1(cos 2π/4 + isin 2π/4)=−1−i
20 lut 19:05
Mila:
z
4=−4
v=−4
|v|=4
φ=π
| π+2kπ | | π+2kπ | |
zk=4√22*(cos |
| +i sin |
| ), k∊{0,1,2,3} |
| 4 | | 4 | |
| π | | π | | √2 | | √2 | |
z0=√2*(cos |
| +i sin |
| )=√2*( |
| +i * |
| )=1+i |
| 4 | | 4 | | 2 | | 2 | |
| 2kπ | | 2kπ | |
Pozostałe z wzoru zk=z0*(cos |
| +i sin |
| ), k=1,2,3 |
| 4 | | 4 | |
| π | | π | |
z1=(1+i)*(cos |
| +i sin |
| )=(1+i)*(0+i)=−1+i |
| 2 | | 2 | |
z
2=(1+i)*(cosπ+i sinπ)=(1+i)(−1)=
−1−i
| 3π | | 3π | |
z3=(1+i)*(cos |
| +i sin |
| )=(1+i)*(−i)=1−i |
| 2 | | 2 | |
20 lut 21:13