Funkcje trygonometryczne, cyklometria
Michał: Trygonometria (równanie, nierówność, cyklometria)
| 1 | |
a) Naszkicować wykres funkcji f(x) = |
| |cos2x − sin2x| |
| 2 | |
b) Rozwiązać nierówność 2cos
2 x + sin x < 2
c) Obliczyć cos(arcctg(−1) − arcsin 1)
| ln(arctg(x−1)) | |
d) Wyznaczyć dziedzinę funkcji f(x) = |
| |
| arccos(x−1) | |
b) 2cos
2 x + sin x < 2
cos
2 x = 1−sin
2 x
2(1−sin
2 x) + sin x < 2
2−2sin
2 x + sin x < 2
2sin
2 x + sin x > 0
sin x(2sin x + 1) > 0
| 1 | |
sin x = 0 v sin x = − |
| |
| 2 | |
c) cos(arcctg(−1) − arcsin 1)
| 3π | | π | | π | | √2 | |
cos(( |
| ) − |
| ) = cos( |
| ) = |
| |
| 4 | | 2 | | 4 | | 2 | |
Proszę o sprawdzenie i pomoc z pozostałymi przykładami