1 | x−2 | |||
lim x→0 | − | |||
x2 | x3−x |
1 | x−1−1 | |||
limx→0 | − | = | ||
x2 | x2(x−1) |
1 | (x−1) | 1 | ||||
= limx→0 | − | − | = | |||
x2 | x2(x−1) | x2(x−1) |
1 | 1 | 1 | ||||
= limx→0 | − | − | = | |||
x2 | x2 | x2(x−1) |
1 | 1 | 1 | ||||
=limx→0 − | = − | = − | = −∞ | |||
x2(x−1) | 02(0−1) | 0 |
1 | x−1−1 | |||
limx→0 | − | = | ||
x2 | x(x2−1) |
1 | (x−1) | 1 | ||||
= limx→0 | − | − | = | |||
x2 | x(x−1)(x+1) | x(x−1)(x+1) |
1 | 1 | 1 | ||||
= limx→0 | − | − | = | |||
x2 | x(x+1) | x(x−1)(x+1) |
(x−1)(x+1)−x(x−1)−x | ||
= limx→0 | = | |
x2(x−1)(x+1) |
−1 | −1 | |||
= limx→0 | = U{−1}{02(0−1)(0+1) = | |||
x2(x−1)(x+1) | 0 |
−1 | −1 | −1 | ||||
limx→0+ | = | = | = +∞ | |||
x2(x−1)(x+1) | (0+)*(−1)*1 | 0− |
−1 | −1 | −1 | ||||
limx→0− | = | = | = +∞ | |||
x2(x−1)(x+1) | (0+)*(−1)*1 | 0− |
1 | x−1−1 | |||
to limx→0 | − | = +∞ | ||
x2 | x(x2−1) |
1 | ||
niestety, jak wyłączę na dole x2 to zostanie mi x− | ||
x |
−1 | −1 | |||
Przeczysz sam sobie | = − ∞ oraz | = −∞ | ||
0+ | 0− |