Prawdopodobieństwo
Abit: Niech A, B⊂Ω, 0 <P (A)<1. Wykaz, że jeśli P (B|A)=P (B|A') to P (A)*P (B)=P (A∩B).
17 lut 12:38
Adamm: | P(B∩A) | | P(B∩A') | |
P(B|A)=P(B|A') ⇔ |
| = |
| ⇔ |
| P(A) | | P(A') | |
| P(A) | | 1 | |
⇔ P(A∩B)= |
| P(B∩A') ⇔ P(A∩B)+P(A'∩B)= |
| P(B∩A') ⇔ |
| P(A') | | P(A') | |
⇔ P(B)*P(A')=P(B∩A') ⇔ P(B)−P(B∩A')=P(A)*P(B) ⇔ P(A∩B)=P(A)*P(B)
17 lut 12:50