tgx−sinx | ||
lim | ||
sin3x |
tgx−sinx | sinx | 1−cosx | ||||
limx→0 | = limx→0 | * | ||||
x3 | x | x2cosx |
sinx | ||
limx→0 | = 1 oczywiście | |
x |
tg(x)−sin(x) | sin(x) | 1 | |||
=( | −sin(x)) | ||||
sin3(x) | cos(x) | sin3(x) |
sin(x)−sin(x)cos(x) | |
cos(x)sin3(x) |
sin(x)−sin(x)cos(x) | x3 | 1 | |
x3 | sin3(x) | cos(x) |
sin(x)−sin(x)cos(x) | |
x3 |
sin(x) | 1−cos(x) | |
x | x2 |
1−cos2(x) | |
x2(1+cos(x)) |
sin2(x) | 1 | |
x2 | 1+cos(x) |
1 | 1 | |||
limx→0 | = | |||
1+cos(x) | 2 |
1 | x3 | ||
→1 oraz | →1 więc Mariusz już tego tak nie rozpisywał | ||
cosx | sin3x |
sin(x) | ||
Myślę że stosując regułę de l'Hospitala potrzebowalibyśmy tylko granicy limx→0 | ||
x |
tg(x+Δx)−tg(x) |
| |||||||||
limΔx→0 | =limΔx→0 | |||||||||
Δx | Δx |
| ||||||||
limΔx→0 | ||||||||
Δx |
| ||||||||
limΔx→0 | ||||||||
Δx |
tg(Δx) | 1+tg2(x) | ||
limΔx→0 | |||
Δx | 1−tg(x)tg(Δx) |
sin(Δx) | 1 | 1+tg2(x) | ||
limΔx→0 | ||||
Δx | cos(Δx) | 1−tg(x)tg(Δx) |
sin(x+Δx)−sin(x) | sin(x)cos(Δx)+cos(x)sin(Δx)−sin(x) | |||
limΔx→0 | =limΔx→0 | |||
Δx | Δx |
sin(x)(cos(Δx)−1)+cos(x)sin(Δx) | ||
limΔx→0 | ||
Δx |
1−cos(Δx) | ||
=−sin(x)limΔx→0 | +cos(x)limΔx→0sin(Δx)}{Δx} | |
Δx |
(1−cos(Δx))(1+cos(Δx)) | ||
=−sin(x)limΔx→0 | +cos(x)limΔx→0sin(Δx)}{Δx} | |
Δx(1+cos(Δx)) |
sin2(Δx) | ||
=−sin(x)limΔx→0 | +cos(x)limΔx→0sin(Δx)}{Δx} | |
Δx(1+cos(Δx)) |
sin(Δx) | sin(Δx) | ||
=−sin(x)limΔx→0 | +cos(x)limΔx→0sin(Δx)}{Δx} | ||
Δx | 1+cos(Δx) |
sin3(x+Δx)−sin3(x) | ||
limΔx→0 | ||
Δx |
(sin(x+Δx)−sin(x))(sin2(x+Δx)+sin(x+Δx)sin(x)+sin2(x)) | ||
limΔx→0 | ||
Δx |
sin(x+Δx)−sin(x) | ||
limΔx→0 | (sin2(x+Δx)+sin(x+Δx)sin(x)+sin2(x)) | |
Δx |
sin(x+Δx)−sin(x) | ||
3sin2(x)limΔx→0 | ||
Δx |
sin(x+Δx)−sin(x) | sin(x)cos(Δx)+cos(x)sin(Δx)−sin(x) | |||
limΔx→0 | =limΔx→0 | |||
Δx | Δx |
sin(x)(cos(Δx)−1)+cos(x)sin(Δx) | ||
limΔx→0 | ||
Δx |
1−cos(Δx) | ||
=−sin(x)limΔx→0 | +cos(x)limΔx→0sin(Δx)}{Δx} | |
Δx |
(1−cos(Δx))(1+cos(Δx)) | ||
=−sin(x)limΔx→0 | +cos(x)limΔx→0sin(Δx)}{Δx} | |
Δx(1+cos(Δx)) |
sin2(Δx) | ||
=−sin(x)limΔx→0 | +cos(x)limΔx→0sin(Δx)}{Δx} | |
Δx(1+cos(Δx)) |
sin(Δx) | sin(Δx) | ||
=−sin(x)limΔx→0 | +cos(x)limΔx→0sin(Δx)}{Δx} | ||
Δx | 1+cos(Δx) |
sin3(x+Δx)−sin3(x) | ||
limΔx→0 | =3sin2(x)cos(x) | |
Δx |