| tgx−sinx | ||
lim | ||
| sin3x |
| tgx−sinx | sinx | 1−cosx | ||||
limx→0 | = limx→0 | * | ||||
| x3 | x | x2cosx |
| sinx | ||
limx→0 | = 1 oczywiście | |
| x |
| tg(x)−sin(x) | sin(x) | 1 | |||
=( | −sin(x)) | ||||
| sin3(x) | cos(x) | sin3(x) |
| sin(x)−sin(x)cos(x) | |
| cos(x)sin3(x) |
| sin(x)−sin(x)cos(x) | x3 | 1 | |
| x3 | sin3(x) | cos(x) |
| sin(x)−sin(x)cos(x) | |
| x3 |
| sin(x) | 1−cos(x) | |
| x | x2 |
| 1−cos2(x) | |
| x2(1+cos(x)) |
| sin2(x) | 1 | |
| x2 | 1+cos(x) |
| 1 | 1 | |||
limx→0 | = | |||
| 1+cos(x) | 2 |
| 1 | x3 | ||
→1 oraz | →1 więc Mariusz już tego tak nie rozpisywał | ||
| cosx | sin3x |
| sin(x) | ||
Myślę że stosując regułę de l'Hospitala potrzebowalibyśmy tylko granicy limx→0 | ||
| x |
| tg(x+Δx)−tg(x) |
| |||||||||
limΔx→0 | =limΔx→0 | |||||||||
| Δx | Δx |
| ||||||||
limΔx→0 | ||||||||
| Δx |
| ||||||||
limΔx→0 | ||||||||
| Δx |
| tg(Δx) | 1+tg2(x) | ||
limΔx→0 | |||
| Δx | 1−tg(x)tg(Δx) |
| sin(Δx) | 1 | 1+tg2(x) | ||
limΔx→0 | ||||
| Δx | cos(Δx) | 1−tg(x)tg(Δx) |
| sin(x+Δx)−sin(x) | sin(x)cos(Δx)+cos(x)sin(Δx)−sin(x) | |||
limΔx→0 | =limΔx→0 | |||
| Δx | Δx |
| sin(x)(cos(Δx)−1)+cos(x)sin(Δx) | ||
limΔx→0 | ||
| Δx |
| 1−cos(Δx) | ||
=−sin(x)limΔx→0 | +cos(x)limΔx→0sin(Δx)}{Δx} | |
| Δx |
| (1−cos(Δx))(1+cos(Δx)) | ||
=−sin(x)limΔx→0 | +cos(x)limΔx→0sin(Δx)}{Δx} | |
| Δx(1+cos(Δx)) |
| sin2(Δx) | ||
=−sin(x)limΔx→0 | +cos(x)limΔx→0sin(Δx)}{Δx} | |
| Δx(1+cos(Δx)) |
| sin(Δx) | sin(Δx) | ||
=−sin(x)limΔx→0 | +cos(x)limΔx→0sin(Δx)}{Δx} | ||
| Δx | 1+cos(Δx) |
| sin3(x+Δx)−sin3(x) | ||
limΔx→0 | ||
| Δx |
| (sin(x+Δx)−sin(x))(sin2(x+Δx)+sin(x+Δx)sin(x)+sin2(x)) | ||
limΔx→0 | ||
| Δx |
| sin(x+Δx)−sin(x) | ||
limΔx→0 | (sin2(x+Δx)+sin(x+Δx)sin(x)+sin2(x)) | |
| Δx |
| sin(x+Δx)−sin(x) | ||
3sin2(x)limΔx→0 | ||
| Δx |
| sin(x+Δx)−sin(x) | sin(x)cos(Δx)+cos(x)sin(Δx)−sin(x) | |||
limΔx→0 | =limΔx→0 | |||
| Δx | Δx |
| sin(x)(cos(Δx)−1)+cos(x)sin(Δx) | ||
limΔx→0 | ||
| Δx |
| 1−cos(Δx) | ||
=−sin(x)limΔx→0 | +cos(x)limΔx→0sin(Δx)}{Δx} | |
| Δx |
| (1−cos(Δx))(1+cos(Δx)) | ||
=−sin(x)limΔx→0 | +cos(x)limΔx→0sin(Δx)}{Δx} | |
| Δx(1+cos(Δx)) |
| sin2(Δx) | ||
=−sin(x)limΔx→0 | +cos(x)limΔx→0sin(Δx)}{Δx} | |
| Δx(1+cos(Δx)) |
| sin(Δx) | sin(Δx) | ||
=−sin(x)limΔx→0 | +cos(x)limΔx→0sin(Δx)}{Δx} | ||
| Δx | 1+cos(Δx) |
| sin3(x+Δx)−sin3(x) | ||
limΔx→0 | =3sin2(x)cos(x) | |
| Δx |