x3−3x−2 | |
x2−2x |
( 3 x2 − 3)*(x2 − 2 x) − (x3 −3 x − 2)*(2 x − 2) | ||
f '(x) = | = ... | |
( x2 −2 x)2 |
(x+1)2 | x2+2x+1 | 1 | ||||
to f(x)= | = | = x+2+ | , x≠ 2, x≠0 | |||
x | x | x |
1 | x2−1 | |||
f'(x)= 1− | = | |||
x2 | x2 |
x3−3x−2 | (x3−3x−2)'(x2−2x)−(x3−3x−2)(x2−2x)' | |||
( | )' = | |||
x2−2x | (x2−2x)2 |
(3x2−3)(x2−2x)−(x3−3x−2)(2x−2) | ||
= | ||
x4−4x3+4x2 |
3x4−6x3−3x2+6x −2x4+2x3+6x2−6x+4x−4 | ||
= | ||
x2(x2−4x+4) |
x4−4x3+3x2+4x−4 | ||
= | ||
x2(x−2)2 |
(x−2)2(x2−1) | ||
= | ||
x2(x−2)2 |
x2−1 | 1 | |||
= | = 1− | |||
x2 | x2 |