Ponieważ wszystkie ściany ostrosłupa nachylone są pod takim samym kątem do podstawy
to:
1/ ściany są trójkątami przystającymi ( mają taką samą dł podstawy a = 15 cm
2/spodek wysokości H jest jednocześnie środkiem okręgu wpisanego w podstawę ( romb)
i pokrywa się z punktem przecięcia przekątnych rombu.
3/ spodek wysokości ściany bocznej pokrywa się z punktem styczności
okręgu wpisanego w ten romb z bokiem rombu
teraz już tylko obliczenia
Pb= 4*12*a*hb => 30hb = 360 => hb= 12 cm
z Δ OEW ( prostokątnego) mamy:
| H | ||
= sin60o ... to H= 6√3cm
| ||
| hb |
| r | ||
i | = cos60o ... to r= 6 cm => hp= 2r= 12 cm
| |
| hb |