2n+1 | 2n+5 | 4 | 4 | ||||
= | − | =1− | |||||
2n+5 | 2n+5 | 2n+5 | 2n+5 |
2n+1 | ||
limn→∞( | )−3n= | |
2n+5 |
4 | ||
limn→∞(1− | )−3n= | |
2n+5 |
4 | ||
limn→∞((1− | )−(2n+5)/4)3n/((2n+5)/4)= | |
2n+5 |
2n+1 | 2n+5 | |||
( | )−3n=( | )3n= | ||
2n+5 | 2n+1 |
4 | ||
=[(1+ | )(2n+1)/4]4*3n/(2n+1) | |
2n+1 |
4 | ||
limn→∞[(1+ | )(2n+1)/4]4*3n/(2n+1)=e6 | |
2n+1 |
2 n + 1 |
| ||||||||||||
an = ( | )−3n = [( | ) 2n]−1,5 | |||||||||||
2 n + 5 |
|
e | ||
lim an = [ | ]−1,5 = [ e−4]−1,5 = e6 | |
e5 |