| 1 | ||
a) sin(2arcsin | ) | |
| 3 |
| 3 | ||
b) cos(2arccos | ) | |
| 16 |
| 1 | ||
c) sin(3arctg√3+2arccos | ) | |
| 2 |
| 1 | 1 | |||
arcsin | = y ⇔ sin y = | (to z definicji) | ||
| 3 | 3 |
| 1 | 8 | |||
cos2y = 1 − sin2y = 1 − | = | |||
| 9 | 9 |
| 2√2 | ||
cos y = | ||
| 3 |
| 1 | 2√2 | 4√2 | ||||
sin(2y) = 2 * | * | = | ||||
| 3 | 3 | 9 |
| π | ||
tg | = √3 | |
| 3 |
| π | ||
zatem arctg√3 = | ||
| 3 |
| 1 | ||
arccos | to tez jestesmy w stanie podac. | |
| 2 |
| π | 1 | |||
cos | = | |||
| 3 | 2 |
| 1 | π | |||
zatem arccos | = | |||
| 2 | 3 |
| 1 | π | π | ||||
sin(3arctg√3+2arccos | ) = sin(3* | + 2* | ) = | |||
| 2 | 3 | 3 |
| 2 | 2 | |||
= sin(π + | π) = (ze wzorow redukcyjnych) = − sin | π = | ||
| 3 | 3 |
| π | π | √3 | ||||
= − sin(π − | ) = − sin | = − | ||||
| 3 | 3 | 2 |
| 3 | π | |||
b) arccos | =α, α∊<0, | > | ||
| 16 | 2 |
| 3 | 3 | 3 | ||||
cos(2 arccos | )=cos(2α)=2cos2α−1=2*(cos(arccos | ))2−1=2*( | )2−1= | |||
| 16 | 16 | 16 |
| 9 | 9 | 119 | ||||
=2* | −1= | −1=− | ||||
| 256 | 128 | 128 |