matematykaszkolna.pl
Proszę o pomoc w rozwiązaniu granicy Ania: lim (x−>x0) ((sqrt(sinx)−sqrt(sin(x0)))/(x−x0))
4 lut 09:12
Mariusz: Pochodna funkcji w punkcie
4 lut 09:17
Mariusz: x−x0=Δx x−Δx=x0
 sin(x)sin(x−Δx) 
limΔx→0

 Δx 
 sin(x)−sin(x−Δx) 
limΔx→0

 Δx(sin(x)+sin(x−Δx)) 
 sin(x)−(sin(x)cos(Δx)−cos(x)sin(Δx)) 1 
limΔx→0

limΔx→0

 Δx sin(x)+sin(x−Δx) 
1 sin(x)−(sin(x)cos(Δx)−cos(x)sin(Δx)) 

limΔx→0

2sin(x) Δx 
 sin(x)−(sin(x)cos(Δx)−cos(x)sin(Δx)) 
limΔx→0

 Δx 
 sin(x)−sin(x)cos(Δx)+cos(x)sin(Δx)) 
limΔx→0

 Δx 
 sin(x)(1−cos(Δx))+cos(x)sin(Δx)) 
limΔx→0

 Δx 
 1−cos(Δx) sin(Δx) 
sin(x)limΔx→0

+cos(x)limΔx→0

 Δx Δx 
 1−cos2(Δx) sin(Δx) 
sin(x)limΔx→0

+cos(x)limΔx→0

 Δx(1+cos(Δx)) Δx 
 sin(Δx)sin(Δx) sin(Δx) 
sin(x)limΔx→0


+cos(x)limΔx→0

 Δx1+cos(Δx) Δx 
=cos(x)
 sin(x)sin(x−Δx) cos(x) 
limΔx→0

=

 Δx 2sin(x) 
4 lut 09:31