| dx | ||
∫ | = ∫sin−nxdx | |
| sinnx |
| c | 1 | c2 | ||||
( | ) ' = − | − (n−1) | ||||
| sn−1 | sn−2 | sn |
| 1 | 1−s2 | |||
= − | − (n−1) | |||
| sn−2 | sn |
| 1 | 1 | |||
= (n−2) | − (n−1) | |||
| sn−2 | sn |
| 1 | 1 | ||
= | |||
| sinnx | sinn−1x * sin x |
| dx | ||
In = ∫ | ||
| sinn−2*sin2x |
| n−2 | 1 | |||
∫ (sin x)−n dx = | ∫(sin x)−n+2 dx − | cos x (sin x)n−1 | ||
| n−1 | n−1 |
| dx | cos2(x)+sin2(x) | |||
∫ | =∫ | dx | ||
| sinn(x) | sinn(x) |
| dx | cos(x) | dx | ||||
∫ | =∫cos(x) | dx+∫ | ||||
| sinn(x) | sinn(x) | sinn−2(x) |
| dx | 1 | cos(x) | |||
∫ | =− | ||||
| sinn(x) | n−1 | sinn−1(x) |
| 1 | (−1) | dx | ||||
− | ∫(−sin(x)) | dx+∫ | ||||
| n−1 | sinn−1(x) | sinn−2(x) |
| dx | 1 | cos(x) | n−2 | dx | |||||
∫ | =− | + | ∫ | ||||||
| sinn(x) | n−1 | sinn−1(x) | n−1 | sinn−2(x) |
Czy dla cos ten wzor dziala tak samo i odp. będzie taka sama, tylko, że z sin w
miejscu cos i na odwrót?
| dx | dx | ||||||||||||
∫ | dx=∫ | ||||||||||||
| cosn(x) |
|
| π | ||
t= | −x | |
| 2 |
| dt | ||
=−∫ | ||
| sinn(t) |