dx | ||
∫ | = ∫sin−nxdx | |
sinnx |
c | 1 | c2 | ||||
( | ) ' = − | − (n−1) | ||||
sn−1 | sn−2 | sn |
1 | 1−s2 | |||
= − | − (n−1) | |||
sn−2 | sn |
1 | 1 | |||
= (n−2) | − (n−1) | |||
sn−2 | sn |
1 | 1 | ||
= | |||
sinnx | sinn−1x * sin x |
dx | ||
In = ∫ | ||
sinn−2*sin2x |
n−2 | 1 | |||
∫ (sin x)−n dx = | ∫(sin x)−n+2 dx − | cos x (sin x)n−1 | ||
n−1 | n−1 |
dx | cos2(x)+sin2(x) | |||
∫ | =∫ | dx | ||
sinn(x) | sinn(x) |
dx | cos(x) | dx | ||||
∫ | =∫cos(x) | dx+∫ | ||||
sinn(x) | sinn(x) | sinn−2(x) |
dx | 1 | cos(x) | |||
∫ | =− | ||||
sinn(x) | n−1 | sinn−1(x) |
1 | (−1) | dx | ||||
− | ∫(−sin(x)) | dx+∫ | ||||
n−1 | sinn−1(x) | sinn−2(x) |
dx | 1 | cos(x) | n−2 | dx | |||||
∫ | =− | + | ∫ | ||||||
sinn(x) | n−1 | sinn−1(x) | n−1 | sinn−2(x) |
dx | dx | ||||||||||||
∫ | dx=∫ | ||||||||||||
cosn(x) |
|
π | ||
t= | −x | |
2 |
dt | ||
=−∫ | ||
sinn(t) |