| sinx | sin2x | 1−cos2x | ||||
J = ∫sinxtgxdx = ∫sinx* | dx = ∫ | dx = ∫ | dx | |||
| cosx | cosx | cosx |
| dx | dx | |||
J = ∫ | − ∫cosxdx = ∫ | − sinx + C | ||
| cosx | cosx |
| dx | ||
J = J1 −sinx + C gdzie J1 = ∫ | ||
| cosx |
| cos2(x/2) − sin2(x/2) | 1 − tg2(x/2) | |||
cosx = | = | |||
| cos2(x/2) + sin2(x/2) | 1 + tg2(x/2) |
| 1 − u2 | 2du | |||
cosx = | dx = | |||
| 1 + u2 | 1 + u2 |
| 1 | 2 | du | ||||||||||
J1 = ∫ | * | du = 2∫ | ||||||||||
| 1+u2 | 1−u2 |
| 1 | ||
Rozpisuję ułamek | na dwa ułamki proste | |
| 1−u2 |
| 1 | A | B | |||
= | + | ||||
| 1 − u2 | 1 − u | 1 + u |
| 1 | A*(1 + u)+ B*(1 − u) | ||
= | |||
| 1 − u2 | 1 − u2 |
| 1 | (A + B) + u*(A − B) | ||
= | |||
| 1 − u2 | 1 − u2 |
| 1 | 1 | 1 | 1 | 1 | |||||
= = | * | + | * | = | |||||
| 1 − u2 | 2 | 1 − u | 2 | 1 + u |
| 1 | 1 | 1 | ||||
*( | + | ) | ||||
| 2 | 1 − u | 1 + u |
| 1 | 1 | 1 | 1 | 1 | ||||||
J1 = 2* | *∫( | + | )du = ∫( | + | )du | |||||
| 2 | 1 − u | 1 + u | 1 − u | 1 + u |
| 1 + u | 1 + tg(x/2) | |||
J1 = −ln(1 − u) + ln(1 + u) = ln | = ln | |||
| 1 − u | 1 − tg(x/2) |
| 1 + tg(x/2) | ||
J = ln | − sinx + C | |
| 1 − tg(x/2) |