pochodne
student: Mógłby ktos sprawdzic czy dobrze mi wyszło ?
Pochodna z:
a) f(x)=lnsin5x * arcsin5x2.
wynik jaki mi wyszedł:
5cos5xsin5x * arcsin5x2 + lnsin5x * 10x√1−25x2 (w liczniku jest 10x)
b) f(x)=(cos3x)x2
odp: ex2*ln(cos3x) *2xln(cos3x)+ x2cos3x * −3sin3x (w liczniku jest x2)
1 lut 14:28
Jerzy:
W iereszej pochodnej pod pierwiastkiem:: 1 − 25x4
1 lut 14:30
Jerzy:
Druga dobrze.
1 lut 14:32
student: właśnie coś tak czułem, że pierwsza źle wyszla. Dzięki Jerzy
1 lut 14:33
grzest: Pochodna drugiej funkcji także jest źle policzona.
Prawidłowy wynik to:
ex2*ln(cos3x)(2x*ln(cos3x) −3x2tg3x)=(cos3x)x2(2x*ln(cos3x)−3x2tg3x).
}
1 lut 15:22
Jerzy:
| x2 | |
@grzest ... |
| *(−3sin3x) = −3x2*tg(3x) , więc nie opowiadaj bzdur,że ma żle. |
| cos3x | |
1 lut 15:27
grzest: Jeśli przyjąć, że w matematyce nie obowiązują nawiasy, to wynik jest dobry ale
niejednoznaczny.
Jeśli twierdzisz, że tak napisany wynik jest dobry, to dlaczego wstawiłeś nawias po znaku
mnożenia w wyrażeniu
Ponadto w odpowiedzi podanej przez studenta nie ma nawiasu pomiędzy wyrażeniem e
x2lncos3x a
pozostałą częścią wyrażenia.
Jak można więc twierdzić, że jest to poprawny wynik?
Matematyka ma swoje ustalone zasady związane z kolejnością wykonywanych działań. Jeśli się do
tego nie stosujemy, wprowadzamy chaos do wypisywanych wzorów. Warto o tym pamiętać.
1 lut 15:51
Jerzy:
Co do do nawiasu fakt ze powinien być.
Ale nie twierdź,że żle policzona , bo policzona jest dobrze.
1 lut 15:56
grzest:
Umiejętność prawidłowego zapisu wyrażeń matematycznych jest tak samo ważna jak zastosowanie
odpowiedniego wzoru do policzenia pochodnej.
Chyba nie powiesz, że 2*(3+4) to to samo co 2*3+4 a tak w napisanym przez studenta wzorze jest.
Jeśli nadal twierdzisz, że pochodna jest policzona dobrze,to porównaj wyniki podanych przeze
mnie wyrażeń. Dalej twierdzisz, że jest to to samo?
1 lut 16:26