matematykaszkolna.pl
Uzasadnij Xbvzc: Uzasadnij, że jeśli ab>2 to a4+b4>8
30 sty 12:52
jc: (a2−b2)2 ≥ 0 a4 + b4 ≥ 2a2b2 = 2(ab)2 > 2*22 = 8
30 sty 13:02
Krzysiek:
 2 
a>

 b 
24 24 

+b4≥2

b4=8
b4 b4 
30 sty 13:09
Jerzy: @Krzysiek ... nie ma założenia,że b > 0
30 sty 13:11
Krzysiek: I?
30 sty 13:22
Jerzy: Dzielenie nierówności: ab > 2 przez b , jest nieuprawnione.
30 sty 13:25
Krzysiek: Jeśli b jest ujemne, to a też.. Więc na to samo wychodzi.. Mogę bez problemu podzielić
30 sty 13:31
zef: jeśli a=−2, b=−4 To wiadomo że ab>2, bo 8>2 ab>2 i jeżeli podzielimy przez b to mamy
 2 
a>

podstawmy
 b 
 2 
−2>

 −4 
 −1 
−2>

 2 
Co daje nam sprzeczność więc sposób w który zrobił Krzysiek jest błędny
30 sty 13:36
Jerzy:
 2 
(−1)*(−3) > 2 , ale: (−1) >

to już sprzeczność .
 −3 
30 sty 13:40
Krzysiek: no dobra, to inaczej ab>2 a2b2>4
 4 
a2>

 b2 
 24 
a4>

 b4 
30 sty 13:45
Jerzy: Teraz to co innego emotka
30 sty 13:48