k(k+1)(2k+1) | |
+ (k+1)2 | |
6 |
(...)(..)(..) | (k+1)(k+2)(2k+3) | ||
aby otrzymać | |||
6 | 6 |
k(k+1)(2k+1) | (k+1) | (k+1)(k+2)(2k+3) | |||
+(k+1)2= | (2k2+k+6k+6)= | ||||
6 | 6 | 6 |
k*(k+1)*(2k+1)+6(k+1)2 | |
= | |
6 |
(k+1)*[k*(2k+1)+6(k+1)] | ||
= | = | |
6 |
(k+1)*(2k2+7k+6) | 3 | |||
= | = [Δ=1, k=−2 lub k=− | ] | ||
6 | 2 |
(k+1)*2*(k+2)*(k+32) | ||
= | = | |
6 |
(k+1)*(k+2)*(2k+3) | ||
= | ||
6 |