| 1 | 2 | |||
∫sin(2x)cos(3x)dx= | sin(2x)sin(3x)− | ∫cos(2x)sin(3x)dx | ||
| 3 | 3 |
| 1 | ||
∫sin(2x)cos(3x)dx= | sin(2x)sin(3x)− | |
| 3 |
| 2 | 1 | 1 | |||
(− | cos(2x)cos(3x)−∫(− | sin(3x))(−2sin(2x))dx) | |||
| 3 | 3 | 3 |
| 1 | 2 | 4 | ||||
∫sin(2x)cos(3x)dx= | sin(2x)sin(3x)+ | cos(2x)cos(3x)+ | ∫sin(2x)cos(3x)dx | |||
| 3 | 9 | 9 |
| 5 | 1 | 2 | |||
∫sin(2x)cos(3x)dx= | sin(2x)sin(3x)+ | cos(2x)cos(3x) | |||
| 9 | 3 | 9 |
| 3 | 2 | |||
∫sin(2x)cos(3x)dx= | sin(2x)sin(3x)+ | cos(2x)cos(3x)+C | ||
| 5 | 5 |