| x2 − 2x +3 | ||
Zbadaj przebieg zmienności funkcji f(x) = | . | |
| 1+x2 |
| x2−2x+3 | ||
f(x)= | ||
| 1+x2 |
| (2x−2)(1+x2)−(x2−2x+3)(2x) | 2x+2x3−2−2x2−2x3+4x2−6x | |||
f'(x)= | = | = | ||
| (1+x2)2 | (1+x2)2 |
| 2x2−4x−2 | |
| (1+x2)2 |
| 2x2−4x−2 | ||
f'(x)=0 ⇔ | =0 | |
| (1+x2)2 |
| 4−4√2 | ||
x1= | =1−√2 − maksimum w tym punkcie | |
| 4 |
| 4+4√2 | ||
x2= | =1+√2 − minimum w tym punkcie | |
| 4 |
| (1−√2)2−2(1−√2)+3 | 1−2√2+2−2+2√2+3 | |||
f(1−√2)= | = | = | ||
| 1+(1−√2)2 | 2−2√2+2 |
| 4 | 2 | 4+2√2 | |||
= | = | =2+√2 MAKS | |||
| 4−2√2 | 2−√2 | 2 |
| (1+√2)2−2(1+√2)+3 | 1+2√2+2−2−2√2+3 | |||
f(1+√2)= | = | = | ||
| 1+(1+√2)2 | 2+2√2+2 |
| 4 | 2 | 4−2√2 | |||
= | = | =2−√2 MINIMUM | |||
| 4+2√2 | 2+√2 | 2 |
| x2−2x+3 |
| ||||||||||||||||||
lim | =lim | =1 | |||||||||||||||||
| 1+x2 |
|
| x2−2x+3 | ||
lim | =1 | |
| 1+x2 |