1 | ||
limn−>∞ [ | *(n2+2)]n2+1 | |
n2 |
x2 | ||
oraz granice funkcji limx−>∞ | ||
e3x |
2 | n2+1 | |||
1) = lim[(1+ | )n2]k , gdzie: k = | i lim k = 1 | ||
n2 | n2 |
2 | ||
stąd: = lim(1+ | 1 = (e2)1 = e2 | |
n2 |
2x | 2 | 2 | ||||
2) = [H] = lim | = [H] = lim | = [ | ] = 0 | |||
3e3x | 9e3x | +∞ |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |