x2 dx | ||
∫ | ||
33√x+2 |
x2+1 | ||
∫ | dx | |
√3x+1 |
2tdt | ||
2tdt=3dx =>dx= | ||
3 |
t2−1 | ||
x= | ||
3 |
x2 | x2 | |||
∫ | (x+2)−1/3dx= | (x+2)(2/3)−∫x(x+2)(2/3)dx | ||
3 | 2 |
x2 | 3 | 3 | ||||
= | (x+2)(2/3)−( | x(x+2)(5/3)− | ∫(x+2)5/3dx) | |||
2 | 5 | 5 |
x2 | 3 | 9 | ||||
= | (x+2)(2/3)− | x(x+2)(5/3)+ | (x+2)8/3+C | |||
2 | 5 | 40 |
2 | 3 | 2 | 4 | |||||
∫ | (x2+1) | dx= | (x2+1)√3x+1− | ∫x√3x+1dx | ||||
3 | 2√3x+1 | 3 | 3 |
2 | 3 | 2 | 4 | |||||
∫ | (x2+1) | dx= | (x2+1)√3x+1− | ∫x(3x+1)1/2dx | ||||
3 | 2√3x+1 | 3 | 3 |
2 | 3 | 2 | ||||
∫ | (x2+1) | dx= | (x2+1)√3x+1− | |||
3 | 2√3x+1 | 3 |
4 | 2 | 2 | |||
( | x(3x+1)3/2− | ∫(3x+1)3/2) | |||
3 | 9 | 9 |
2 | 3 | 2 | 8 | |||||
∫ | (x2+1) | dx= | (x2+1)√3x+1− | x(3x+1)3/2+ | ||||
3 | 2√3x+1 | 3 | 27 |
16 | |
(3x+1)5/2+C | |
405 |