| 5 | ||
f'(x) = | ||
| 5x + 1 |
| ln(5x+1+5Δx)−ln(5x+1) | 5Δx | |||
limΔx→0 | = limΔx→0 ln(1+ | )1/Δx = | ||
| Δx | 5x+1 |
| 5Δx | 5 | |||
= limΔx→0 ln(1+ | )[(5x+1)/5Δx]*(5/(5x+1)) = | |||
| 5x+1 | 5x+1 |
dziękuję
| 3(x+Δx)−3x | ||
limΔx→0 | = 3 | |
| Δx |
| 16x+Δx−16x | eln16Δx−1 | |||
limΔx→0 | = 16xlimΔx→0ln16 | = | ||
| Δx | ln16Δx |
| 1 | ||
√(43x+ | ) | |
| x |
| √64x+Δx+1/(x+Δx)−√64x+1/x | ||
limΔx→0 | = | |
| Δx |
| 64x+Δx+1/(x+Δx)−64x+1/x | ||
= limΔx→0 | = | |
| (√64x+Δx+1/(x+Δx)+√64x+1/x)Δx |
| eln64Δx−1 | ||
=limΔx→0 64xln64 | + | |
| (√64x+Δx+1/(x+Δx)+√64x+1/x)ln64Δx |
| ||||||||
+ | = | |||||||
| (√64x+Δx+1/(x+Δx)+√64x+1/x)ln64Δx |
| |||||||||||
= | |||||||||||
| 2√64x+1/x |