| √1−x2 | ||
∫ | dx | |
| x2+1 |
| dx | ||
=∫ | = asin(x) + C | |
| √1−x2 |
| √a | 1 | ||
= | |||
| a | √a |
| t2−1 | 2 | |||
x= | =1− | |||
| t2+1 | t2+1 |
| (t2−1)2 | (t2+1)2 | |||
x2+1= | + | |||
| (t2+1)2 | (t2+1)2 |
| t4−2t2+1+t4+2t2+1 | ||
x2+1= | ||
| (t2+1)2 |
| t4+1 | ||
x2+1=2 | ||
| (t2+1)2 |
| 2t | ||
(1−x)t= | ||
| t2+1 |
| 4t | ||
dx= | dt | |
| (t2+1)2 |
| 2t | (t2+1)2 | 4t | ||
∫ | dt | |||
| t2+1 | 2(t4+1) | (t2+1)2 |
| 4t2 | ||
∫ | dt | |
| (t2+1)(t4+1) |
| (t2+1)2−(t4+1) | ||
2(∫ | dt) | |
| (t2+1)(t4+1) |
| t2+1 | 1 | |||
2(∫ | dt−∫ | dt) | ||
| t4+1 | t2+1 |