(−1)n | ||
sin(x2007)=∑n=0∞ | (x2007)2n+1 = | |
(2n+1)! |
(−1)n | ||
= ∑n=0∞ | x4014n+2007 | |
(2n+1)! |
(−1)n | ||
∫ sin(x2007)dx = ∫∑n=0∞ | x4014n+2007dx = | |
(2n+1)! |
(−1)n | ||
= ∑n=0∞ | x4014n+2008+c | |
(4014n+2008)(2n+1)! |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |