t2+1 | ||
ex= | ||
2t |
2t*2t−2(t2+1) | ||
exdx= | dt | |
4t2 |
t2−1 | ||
exdx= | dt | |
2t2 |
t2+1 | t2−1 | ||
dx= | dt | ||
2t | 2t2 |
t2−1 | 2t | ||
dx= | dt | ||
2t2 | t2+1 |
t2−1 | ||
dx= | dt | |
t(t2+1) |
t2+1 | 2t2−t2−1 | t2−1 | ||||
t−ex=t− | = | = | ||||
2t | 2t | 2t |
t2−1 | t2−1 | ||
∫ | dt | ||
2t | t(t2+1) |
(t2−1)2 | ||
∫ | dt | |
2t2(t2+1) |
(t2+1)2−4t2 | ||
∫ | dt | |
2t2(t2+1) |
t2+1 | 2 | |||
=∫ | dt−∫ | dt | ||
2t2 | t2+1 |
1 | dt | 2 | ||||
= | (∫dt+∫ | )−∫ | dt | |||
2 | t2 | t2+1 |
1 | 1 | |||
= | (t− | )−2arctan(t)+C | ||
2 | t |
t'2−1 | ||
= | −2arctan(t)+C | |
2t |