| t2+1 | ||
ex= | ||
| 2t |
| 2t*2t−2(t2+1) | ||
exdx= | dt | |
| 4t2 |
| t2−1 | ||
exdx= | dt | |
| 2t2 |
| t2+1 | t2−1 | ||
dx= | dt | ||
| 2t | 2t2 |
| t2−1 | 2t | ||
dx= | dt | ||
| 2t2 | t2+1 |
| t2−1 | ||
dx= | dt | |
| t(t2+1) |
| t2+1 | 2t2−t2−1 | t2−1 | ||||
t−ex=t− | = | = | ||||
| 2t | 2t | 2t |
| t2−1 | t2−1 | ||
∫ | dt | ||
| 2t | t(t2+1) |
| (t2−1)2 | ||
∫ | dt | |
| 2t2(t2+1) |
| (t2+1)2−4t2 | ||
∫ | dt | |
| 2t2(t2+1) |
| t2+1 | 2 | |||
=∫ | dt−∫ | dt | ||
| 2t2 | t2+1 |
| 1 | dt | 2 | ||||
= | (∫dt+∫ | )−∫ | dt | |||
| 2 | t2 | t2+1 |
| 1 | 1 | |||
= | (t− | )−2arctan(t)+C | ||
| 2 | t |
| t'2−1 | ||
= | −2arctan(t)+C | |
| 2t |